
Easy for everyone: using components to

offer specialised interfaces for software.

Peter Bagnall, Guy Dewsbury, Ian Sommerville

Computing Department, Lancaster University

Abstract
Traditional technology has tended to be developed from the supply side. Technology companies

have developed applications that possess a functionality which is then marketed to the wider

population. Unfortunately, this technology tends to be designed for a standardised user and

systems that can be used by a wider group of people tend to be built as one-off systems or as

special needs cases. This paper explores the lack of heterogeneity in the design aspects of user

interfaces with reference to communication systems and suggests a more inclusive approach to

designing EAT communication system, based on our work within the DIRC
1
 project.

Introduction
One problem with universal design is the necessity to compromise between the needs of able

bodied and those with some impairment. This makes perfect sense in public areas, where many

people, of varying ability, will be interacting with a device. But in the privacy of one’s home,

solutions tailored to the individual are more appropriate. The telephone, for example, has tended

to be reduced in size, with smaller keys and smaller displays. Mobile phones are a really useful

commodity, allowing people to communicate from any location, unless they have poor eyesight,

poor, dexterity or poor hearing
2
. Electronic interfaces have, in principle, unprecedented abilities

to adapt their interfaces to meet the needs of individual users. However, these abilities are barely

being exploited in commercial systems, largely due to the cost implications of creating a large

range of different interfaces. Using component architectures should however enable more cost-

effective deployment of unique systems which can still work together. The aim of this paper is to

present a possible approach, not to present a completed work.

Encouraging Heterogeneity
Current software user interfaces are largely homogeneous. All Windows users have essentially

the same desktop interface. Even across versions there are few significant differences. While

there are minor adaptations in both systems to help vision impaired users, and extra hardware and

software can be added to provide alternative input and output methods the ability to significantly

modify the desktop system has not been exploited to help disabled users. That it is possible is

proven by some of the extensions Microsoft themselves have produced, such as the so called

powertoys
3
, and by a number of third party desktop replacements such as LiteStep

4
.

A more basic problem is that most software only works with a single medium. Taking word

processors as an example, they are designed foremost for creating paper documents, and as such

support the concept of pages, and all the various layout options that are available on paper. It is

telling that most academic journals are strict about the precise format in which submissions are

made. Using a word processor to create documents, even for a medium such as the web which

shares at least some properties with paper, is rather clumsy, since word processors typically lack

features to manage websites, a facet that is fundamental to the medium.

While much progress has been made by groups such as the World Wide Web Consortium (W3C)

on standards such as Cascading Style Sheets (CSS)
5
, even in the case of the web where standards

do exist, buggy implementations and poor uptake by web designers mean that content is still hard

to extract. This restricts access to the content to its original media.

Better tools for creators of content, so they can produce documents in a medium with which they

are familiar, while still taking that content and making it available for use in alternative media

would be a step forward. Clearly there are some types of content that cannot be translated into

other media automatically, such as photographs, so the idea of a perfect media neutral interchange

medium has limitations but so far there has been little use even with textual content, despite the

W3C’s work in making this possible.

A trans-media scenario
Once an interchange format is established the next problem is linking this with input and output

components. Input might be voice, keyboard, a pointing device of some kind, or customised

switches. Output could be visual at various sizes, auditory, tactile, or some combination of all

three.

To give a concrete example, imagine a scenario involving an instant messenger style application.

The two participants have different limitations and therefore select different media to

communicate with. One is deaf, while the other has poor vision and limited manual dexterity.

For the deaf person, their chosen input might be keyboard and mouse, since this is cost effective,

and they have no difficulty using it. Their output is a standard video display. Their friend

however, prefers voice input due to their limited manual dexterity, and large print video output

due to their poor vision.

The deaf person’s machine uses a simple input component to take commands and content via the

keyboard and mouse. Their output component is also simple – it simply displays the content on

screen.

Their friend has a more complex setup. A voice input component replaces the keyboard and

mouse. It connects to the video output component for delivering feedback, such as prompts,

which are part of the interface, as opposed to being part of the content.

With this setup the two people can communicate, both using their preferred media.

There are two major benefits to this architecture. One is that the two users are using different

interfaces to what is essentially the same application. The other is that either can change their

preferred medium should their needs change, and the change will be system wide.

Should the person with poor vision find that it degrades further they may find that it becomes

easier for them to use spoken output instead of visual.

Different interfaces for different media
Another difficulty with systems which add to a standard windowing interface to allow improved

access is that no changes are made to the design of the interface. Microsoft provides a tool called

Narrator, which will speak the contents of dialog boxes. However, since the dialogs were not

designed to be read they translate poorly into a vocalised interface. To be really effective the

interface needs to be designed for the specific media.

The visual interface for the instant messenger outlined above might show a list of someone’s

contacts. Narrator would simply read that list, which could be time consuming. But for a blind

user a well-designed audible interface would take an entirely different approach. It might respond

to question such as “who is online?”, or commands like “chat to Harry”. While a video display

can enumerate lists of contacts, doing so in an audible interface is tedious. Displaying a history of

the conversation is also useful in the visual interface but there are serious problems in trying to

translate that functionality over to a voice interface in any trivial manner. Screen readers are

simply not up to the task.

This requires a stronger separation between the application, and the interface, so that the interface

segment can be replaced. Applications, as traditionally constructed are tightly coupled with the

interfaces they present, making it very difficult to build different interfaces without re-

implementing the application code as well. While Narrator makes is possible for a blind user to

use a visual interface it is a far cry from being a well designed audible interface in its own right.

The Amulet project
6
 demonstrates an architecture in which the interface can be better separated

from the underlying data, and where changes to the interface can be made without changing the

application code. While Amulet deals only with visual interfaces a similar architecture might be

applied to other interface media.

To adapt an application would therefore require making a customised interface component, which

would sit between input/output components and the application itself. With interface design tools

the effort required to produce this customisation could be vastly less than the effort required to

produce an entire equivalent application. While the effort required might be greater than that

needed for current screen reader tools the quality of the interfaces offered to end-users could be

greatly enhanced.

The interface is an instance of the Bridge Pattern
7
, in that it allows both the application and the

input and output components to change independently of each other.

Advantages for all users
While the ability to use whichever interface a user finds most comfortable would benefit those

with some impairment most, it is also very likely that able-bodied users would also gain from the

ability to choose their interaction medium. Already some applications offer vocal output, for

example iChat, a MacOS instant messenger application, and in some cases this can be a useful

way to interact. Given a benefit to all users any feeling that those with impairments were using a

‘special’ system could be alleviated, since all users would use heavily customised systems which

matched their own working habits.

The ultimate question is should these interfaces be considered in the category of ‘special needs’?

Our response is that they should not. Designing EAT systems and appropriate interfaces should

not be confined or marginalised. If a system has a flaw and cannot be used for its intended

purpose, then we would suggest that the system is not dependable. If the system works in an

unexpected manner or is too complex, or poorly designed they are also undependable
8
.

Our current work with Methodist Care Group (part of Methodist Homes) concerns the

development of a communication system that enables residents of a multi-occupancy dwelling to

communicate with each other in a number of different ways. These systems are co-operatively

designed with the residents themselves determining the look and functionality of the finished

system. The residents have a number of different impairments and consequently the diversity of

their activity patterns and ways they wish to use the tool feeds directly into the design. The

residents range in age from 56 through to 96 and have differing experiences with technology.

Some residents are competent to use computers and word processors, but find that many of the

features of these systems are limiting due to their own impairments. For other residents, texting

is a common form of communication, whilst others find using a standard landline phone difficult

and limiting.

Ideally, the product of this research will be a useful tool to enable communication between

residential spaces in a number of different manners. For some residents, speech is the preferred

medium, where as others are familiar with a qwerty keyboard and would like to use this method

of entry. Other residents would like the ability to just write freehand into the tool thus making

communications more personal. Although, the residents do not, at this time want cameras

attached to the system, as this might infringe on their privacy and make the communication too

formal, they enjoy the idea of seeing the other person with whom they communicate. All these

forms of communication are possible today, but there is no standard package that you can buy

that enables all of these features. Moreover, the system is required to provide a usable interface

to meet the needs of people with visual impairments as well as the inability to use interfaces with

certain colours.

Conclusion
How can we make a system that is easy for everyone to use? The simple answer is to find out

how people will use the system and design it with them. This paper has attempted to show that

designing EAT requires a reappraisal of dependability and current UD design philosophies. We

are designing for the individual, but through our designs we hope to meet the needs of a far wider

audience than those we are working with. By designing interfaces that take advantage of specific

input and output media, instead of retro-fitting adaptations we believe it is possible to get a

superior user experience for all, and by using component technologies to do this we believe we

can keep the development costs manageable.

This method of design is not new, or particularly inventive, but what is beginning to become

apparent, is that if we are able to do this why are no other large companies doing this. If the need

exists then let’s meet it. Designing dependable ‘special’ systems should not be required if EAT

were designed appropriately in the first place.

References

1

DIRC http://www.dirc.org.uk/
2

MacDonald A, “Humanising technology” in Clarkson, Coleman, Keates, Lebbon, Inclusive Design:

Design for the whole population, Springer, London, 2003, pp182-203
3
 Microsoft PowerToys http://www.microsoft.com/windowsxp/pro/downloads/powertoys.asp

4
 LiteStep windows shell replacement http://www.litestep.com/

5
 Cascading Style Sheets http://www.w3.org/TR/REC-CSS2/

6
 Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan S. Ferrency, Andrew Faulring, Bruce D.

Kyle, Andrew Mickish, Alex Klimovitski and Patrick Doane. "The Amulet Environment: New Models

for Effective User Interface Software Development," IEEE Transactions on Software Engineering, Vol.

23, no. 6. June, 1997. pp. 347-365.
7
 Gamma E, Helm R, Johnson R, Vlissides J, Design Patterns: Elements of Reuseable Object Oriented

Software, Addison-Wesley, pp151
8
 Dewsbury G, Sommerville I, Clarke K, Rouncefield M (2003) ‘A Dependability Model of Domestic

Systems’, in Anderson, Felici & Littlewood (Eds), Computer Safety, Reliability And Security: 22nd

International Conference, Safecomp 2003, Proceedings, Lecture Notes In Computer Science, 2788,

Springer Verlag, pp103-115

