
www.surfaceeffect.com 1

Abstract—The GUI has changed very little since its
invention by Xerox in the mid 70. GUIs are no longer able to
present the full range of a typical application’s functions in
such a way that the user can find and understand them easily.
Understanding the objectives a user has in mind while using
software can greatly ease this problem, resulting in more
appropriate, less complex software with the same power as
software we see today. Breaking the application model and
using a document or object approach may provide a superior
solution.

Index Terms—Component Software, Interaction Design,
Interface Scalability, Usability

I. INTRODUCTION

Users of modern computers have to face increasingly
complex software. Humans are no longer capable of coping
effectively with this barrage of technology. The solution does
not lie in the engineering domain, but rather in design. This
paper therefore does not present any new technology, but
rather makes the case for applying some well understood
technologies in such a way that software can be designed
effectively for all.

II. A BRIEF HISTORY OF THE GUI

One of the constants of computing over the last twenty or so
years has been Moore’s Law[1]. The increase of processing
power has lead to an increase in the capability of computers
that is incredible. But most users of modern computers never
use more than a small fraction of these capabilities. There are a
number of reasons for this, but one is the failure of the GUI to
scale, that is, to present that increased number of capabilities
effectively.

In the 70’s when Xerox laid down the foundations of the
GUI, processing power was, compared to today’s standards,
trivial. In 1980 a typical processor ran with a clock speed of
1Mhz, now 1Ghz is typical. The amount of storage and
memory available to programs was also comparatively tiny.
This greatly restricted the complexity of the applications that
could be written.

Today, with the help of Moore’s law we have massively
more powerful systems, but Moore’s law is exceeded only by
the ability of programmers to consume these resources and

Manuscript received 30 May, 2002.
P. M. Bagnall is an independent software design consultant, specialising

in the design of usable systems. Lincolnshire, England. (telephone: +44
(0)7984 168 586, e-mail: pete@surfaceeffect.com).

create applications of a complexity that bewilder most users.
Meanwhile other parts of the typical computer system have

improved much more slowly. Displays have increased in
resolution from CGA’s 640x200 in 1981[2] up to a typical
1024x768 now, about 6 times the screen area in terms of
number of pixels. Even with a resolution of 1280x1024 there
is only about a 10 times increase in screen real estate. With
WYSIWYG more pixels are required to render a character on
screen, so in terms of the quantity of information that can be
displayed the difference is even less.

And the most important part of any computer system, the
user, has received no upgrades at all!

The fundamental concepts behind the GUI have remained
unchanged throughout this time though. The application, the
window, the pointer are essentially unchanged. Buttons, drag
and drop, and drop down menus are all idioms that have now
been with us for over two decades.

The application though is the most important of these.
There is a very strong relationship between the application and
the process. Processes trace their ancestry back to mini-
computer systems doing batch processing. In these early
systems it was important that different tasks could not affect
each other. Isolation became one of the aims of the process. In
Unix, with its protected memory this isolation was well
established.

From the vantage of robustness this was a great move
forward, but this paper aims to show that in some respects, we
now need to move beyond the application to a new paradigm.
While robustness is as important as ever, the need for
information to be accessed and worked with in ever more fluid
ways suggests that this isolation may not be the answer.

III. LIMITS ON THE SCALE OF THE MODERN GUI

What is it that limits the level of complexity that a GUI
can present? There are two main factors.

• Display space
• Users understanding and learning limitations

The display is possibly the most valuable resource an
interaction designer needs to consider. It needs to present the
information being worked with, and the tools that are being
used. Balancing these two needs is vital to good design.

Clearly, the larger a display, the more controls can be made
visible, and as displays have become larger, the number of
controls has increased. But this is largely out of the control of
the designer.

The designer does decide the size of on screen controls

Solving scaling problems with the modern GUI
(July 2002)

Peter M. BAGNALL

www.surfaceeffect.com 2

however. There are two factors that limit the minimum size of
a control. It must be large enough to visually represent its
function. Icons are popular because they can often express their
meanings with far fewer pixels than text. Secondly, they must
be large enough to be manipulated by the pointer. Typically
users can position a mouse to within a few pixels, but the
smaller controls get the longer it takes for users to move the
mouse to them. And many older users never acquire the
manual dexterity than young mouse users take for granted. For
buttons this means about 15x15 pixels is a lower limit.

What really makes complex applications possible though,
is UI idioms such as the menu and dialog box. Both of these
make functions available with a very low cost in display
space. Both do this by hiding the functions behind another
control, only presenting the functions temporarily. In theory
this means that the number of functions that can be displayed
should be, to all intents and purposes, infinite. But as
functions become hidden in this way they also become harder
to find. This is known as a discoverability problem. A feature
is only useful to someone who discovers it.

The clues that are given to help users find functions are
critical. Menus force the designer to classify functions into a
number of menus. This is very sensitive to the wording of
both the menu and the menu items. Getting either the menu
name or the menu item name wrong can prevent users from
ever finding the function they are looking for. Dialog boxes
are even worse at this, simply because dialogs can present a
wide range of functions. Finding a good cue, with only an
icon or a few words to describe the functions offered is very
challenging.

These problems also apply even more to websites, where
navigation difficulties account for a huge number of usability
problems. Users often fail to find pages, even pages they have
seen before. The majority of users have, at some time, had the
experience of knowing it’s there somewhere, but not being
able to find it.

Beyond the presentation of the interface there are deeper
problems. Users are primarily interested in achieving their
goals. They use computers because they can work more
effectively that way. However, they are not interested in
learning how the computer works. They therefore learn as little
as possible to get the job done, and no more. This is borne
out by the fact that users so rarely read the manual, so much
so that software houses often no longer provide them!

Users only learn what is of use, and only remember what
they use frequently. Any functions that they do not find useful
are merely clutter, and make it harder for them to find the
functions they find useful. The more complex applications
become, and the more functionality they offer the worse this
problem becomes. And this is the real failure of the GUI to
scale.

IV. TYPES OF APPLICATIONS

One fundamental feature of modern operating systems is the
file system. Applications fall into two rough groupings with
respect to how much they rely on the file system to organise a
users work. For the purposes of this paper these groups will

be called document processors and information repositories.

A. Document Processors
A document processor is any application that relies on the

file system to store users work. Word processors, Spreadsheets
and so forth all fall into this category. Users create files, save
them, close them, open them, work some more, and so on.
The file system is ignorant of the internal structure of the
files, and so, can offer little help in navigating to the right
one.

Documents processors themselves come in different types
too. There are the general-purpose editors, like the word
processor, and specialised document editors. General-purpose
editors are the ones that suffer most severely from scaling
issues. This is precisely because they are general purpose and
have the capability to do a vast range of different things. At
the moment though they make up the bulk of document
processors.

Specialised document editors are programs that are aimed at
a very specific need. For example, a timesheet program might
create files recording the time an employee spent working on a
range of projects. The program would record that information,
and that alone. This dedication to a single task allows
specialised document editors, to have much simpler user
interfaces and dodge the scaling issues to a large extent.

B. Information Repositories
These applications are essentially databases. Rather than

relying on the file system to organise information,
information repositories take this responsibility themselves. A
common example is the email client. The email client
manages storage of emails itself, and by doing so it allows for
much richer interaction. Because it understands the context in
which the information is used it can offer functions
appropriate to email, which would not be appropriate to other
types of data. Information repositories are slowly making
some headway. Current examples from Apple include
iTunes[3], and iPhoto[4]. The use of information repositories
rather than document processors shows a tacit understanding
that file systems are not the best organisational system for
many types of information.

Information Repositories, because of this tight coupling
between the storage/retrieval and the user interface, are almost
always specialised. This is largely why they are still relatively
uncommon as consumer software. General-purpose software
has a wider market appeal, and so has more people to defray
the development costs. They are very common however in
corporate environments. Because efficient access to
information is imperative in modern corporations, it becomes
cost effective to develop sophisticated dedicated software.
With the rise of the web many businesses saw this as a way of
developing information systems that were effective and cheap
to deploy. One of the problems with the web though is that it
can present anything, and so it is very tempting for IT
managers to try to offer all their information in a single place,
for all users. This leads to exactly the same loss of focus that

www.surfaceeffect.com 3

appears in general-purpose software, and has lead to
information scaling problems on the web. On the web though
this normally goes by the name of navigation.

V. UNDERSTANDING THE USER [5]

One way of solving scaling then is to finesse the problem,
and simply avoid it. In practise this means moving away from
general-purpose applications to more specialised applications.
To design specialised applications well it is important to get a
good understanding of the people who will use it and the
circumstances it will be used in.

As an example, imagine a receptionist in a corporate lobby,
who directs visitors as one of her many tasks. We’ll call her
Susan. Susan works for a large company, at its head office,
where they have about 2500 staff. Because of the number of
staff she is reliant on the staff phone list to be able to contact
people when their visitors arrive. It is important for her to be
able to maintain an air of efficiency, and so she needs a
system that is going to help her do that.

Clearly she is going to be interrupted very frequently, and
so whatever other tasks she may be involved in must be very
tolerant of that fact. She must be able to call up the phone
listings instantly.

Susan is also somewhat new to the job, and so she is not
always very good at guessing the way names are spelt. A
system that helps her mask this fact is a great boon.

Now imagine an important visitor arrives, and asks for
Marc Smyth. Of course this is pronounced Mark Smith, and
Susan has no way of knowing it is not spelt in the obvious
way. The system therefore needs to understand that Marc
Smyth may be the person she is looking for. Susan is
naturally disinclined to ask is “how do you spell Smith?”
which has the potential of making her look rather stupid.

This simple example highlights the value of getting a
detailed understanding. From the description of Susan’s
working environment we can immediately see that the phone
list needs a pseudo-phonetic system such as Soundex; a
simple search may not help her. We can also get some ideas
about what her desktop has to be capable of, to deal with
interruptions.

Real situations, and real software, are rarely as simple as is
suggested by the above example though. To really understand
users and their situations it is necessary to go into the field
and talk to them. Instead of asking them what features they
would like to see in software it is more productive to find out
about what they are trying to achieve, and what constraints
they have to work under. Users more often suggest new
features, or additions to systems, whereas a designer should be
looking beyond that, to find an elegant solution to the whole
problem.

Observing people in their working environment is also
extremely useful; it allows a designer to take note of all the
little workarounds, such as the way they use Post-It notes, and
probe the reasons why they use them. Observing Susan in her
workplace would have revealed the need to be tolerant of
interruptions.

While talking to users the designer should be trying to

determine the goals they have to achieve. In Susan’s case,
with respect to the phone listings, they are going to be…

1. Cope well with interruptions
2. Get the number needed quickly
3. Be able to find Marc Smyth without embarrassment

Having understood a user’s goals, a designer then has to
find a solution, which not only solves the immediate
problem, in this case providing a phone listing, but also
respects those goals. Much software in existence today,
especially operating systems, has not had this level of
scrutiny. Only by understanding how software is to be used
can designers reliably design highly specialised software that
will meet users needs.

VI. BEYOND THE APPLICATION

It is common, in the workplace at the moment, to see
general-purpose editors used in place of specialised document
editors. Macro languages have made this possible. While this
means that very specialised systems can, and are built, it
makes the interface problem worse. Users are presented with a
system that offers all the functionality for destroying the
specialised editor that has been built.

The best example, perhaps, is the Spreadsheet. Because
spreadsheets allow for complex calculations based on data
entered into them they can be used to calculate mortgages,
collect timesheets, process scientific data and so forth. But the
spreadsheet it far too prone to damage. Accidentally deleting a
calculation cell can make the entire sheet invalid. The problem
here might seem to be poor design of the spreadsheet program,
but in fact runs much deeper. It is a case of offering
functionality in a place where it is inappropriate. In the way
these tools are used there is a clear demarcation between
constructing the formulae, designing the spreadsheet and then
later using the sheet to perform calculations. But the way
functions are offered makes no distinction between these types
of use, and simply offers all the functions all the time. In this
case removing the functions for editing formulae while your
mortgage is being calculated would be very beneficial, and
would make the chance of error substantially smaller.

The fact that, despite severe problems in the interfaces,
people use general-purpose tools to construct specialised tools
points very clearly to a demand for highly specialised software
tools. The question then becomes, how can the software
industry feasibly produce software of this kind.

This is not an especially new problem. OpenDoc, OLE, and
Java Beans have all walked along this path before. OpenDoc
and OLE however concentrated on making extremely flexible
documents, rather than specialised applications. They both
assumed that a user would create a document and might decide
to add any sort of element into their document at any time.
This meant that OpenDoc and OLE both had to have the
flexibility to construct these ad-hoc documents. Flexibility of
course leads to complexity of interface. OLE, the winner of
that race does indeed have a complex and rather confusing UI.

The way OLE is used in applications such as MS Word,
and Excel, in effect, leaves design to the end users. It raises
the bar for how general software can become, and as such leads

www.surfaceeffect.com 4

to yet larger UI scaling problems than ever before.

A. Super-Specialised Software
To see how a solution might work consider the Word

Processor. In its current form word processors can be used to
write virtually anything, from email, articles, faxes, books,
websites, letters and so on. Each of these present different
problems to their authors. Even writing a book varies greatly,
depending on whether it’s a work of fiction or non-fiction.

To further make the point consider two extremes, writing a
novel, and writing an email. First, the differences. Clearly a
novel demands serious planning. The story needs to be
planned out, the characters described, and the whole written,
and then sent to a publisher who will frequently assign an
editor to make recommendations back to the author. The
planning aspect is a major part of the whole effort of writing a
book.

An email on the other hand is generally brief, and often in
reply to another email. It needs to be addressed, and often, by
tradition has some form of signature (although whether this is
important is debatable).

However, despite the differences there are also a large
number of similarities. For both, text must be entered, and a
certain basic set of word processing features are useful. Spell
checking, cut and paste, text formatting, and so forth. For the
common elements there are significant opportunities for
sharing software components. The message area of the email
editor and the text area for the book might well be the same
component. By using the same component consistency would
be maintained. Likewise the components for handling
keyboard input would also be common, and this would ensure
that keyboard shortcuts for basic operations such as cut and
paste were consistent, something that has often been a
problem under MacOS.

The real benefits arrive in the novel editor though. With
this the extra functionality that would be useful to support the
author could be presented. For example, there could be tool
panes that contain brief biographies of the various characters,
which could help an author make sure the story maintained its
self-consistency. A way of allowing an editor to make
comments directly in the text, and the author then to navigate
through those comments, much like Word’s reviewing
functionality could be presented in another. Allowing the
author to set the email address of his publisher to streamline
the publishing process might be useful for some authors.
Setting up a style for chapter headings, breaks, page
numbering would be useful in the context of a book. This
functionality is all directly relevant to the objective of the
novel author, to write a good book, but not to other users.

With the email client, the editing components would be
very much like the novel editor, but the rest would be very
different. Email clients are information repositories, not
document editors like the novel editor, and so there is the
store of messages to present. There should be integration with
a contacts database, which should be a component that is used
by many different systems. Tools such as anti-flaming
warnings as Eudora[6] presents could be added.

Even with the novel editor and email client brimming with

useful functions, they would not impact each other. In the
monolithic application model to add the features to please the
novel author would mean stretching the scalability of the word
processor to, and beyond, breaking point. The amount of
configuration that would be required to use the word processor
in one or other mode would be too much for users. This is
precisely why this is a solution to the GUI scaling problem. It
allows functionality to only be presented in an environment
where it is, in fact, useful. By targeting functionality much
more closely it would be possible to increase the functionality
effectively offered, while simplifying the UI. The key phrase
here is “effectively offered”. At the moment, with UI’s beyond
the scaling limits, functionality might be offered, but since
users can’t find it is effectively not offered, or indeed, not
offered effectively.

B. Functional Templates
While this makes the number of functions offered in any of

these super-specialised applications less, and hence scales
better, it does however have the potential to vastly increase the
number of applications a user uses.

It is questionable whether this is really a problem at all
though. Instead it might simply be possible to dispose of the
concept of application entirely. Having applications means
that the user must decide which of the applications they have
is most appropriate for the job they wish to do. However,
with the system described above that choice is essentially
made for them. If you wish to write a novel, use the novel
editor. Thinking of the super-specialised applications as
templates rather than applications leads to a very different
presentation.

These templates not only describe the style of the
document, but also the functionality, and appearance of the
software to edit the document, hence the name, “functional
templates”. With stationary files on the Mac creating a
document from a template was as simple as double clicking
on the stationary file’s icon. A similar approach is expected in
this case.

The technology to create functional templates already
exists. Java Beans and BML (the bean markup language from
IBM alphaworks), are capable of constructing custom
applications of this kind already. Some enhancements may be
required to allow certain components to work together more
effectively. For example, spelling checkers often annotate the
text with underlining to show misspelt words. To separate the
spelling checker from the text editing component would
require a greater level of communication between those two
components than is currently normal in GUI component
libraries. Systems like Java Swing however could easily be
adapted to include these capabilities.

C. Other Advantages
Using functional templates requires an underlying

component software framework. Essential features include a
mechanism to allow for late binding and a naming service.

Functional templates would have to work together. This
means in practise that templates would, in some instances,
have to be loosely defined. To achieve the high degrees of

www.surfaceeffect.com 5

consistency being aimed for a template must not insist on
specific components, when equivalent ones are already in use
elsewhere in the system. Instead a template might specify that
it needs a component to fill a specific role, and make a
suggestion about which component would fit. However, if the
user has, in other contexts already been using a different
component it is highly desirable that it be used instead.

This means that a user can choose those components that
match their requirements best, and still have these interoperate
with new software they buy later. This relies to some extent
on these components being capable of describing themselves
to each other. Systems such as Java Beans have precisely this
capability. Similar approaches have been used to create late
binding systems [7] capable of this kind of adaptation.

This also means, of course, that there must also be a way of
changing individual components, and upgrading components
in a reasonable manner. This requires no new technology, but
it does require a great deal more discipline within the
programming and design communities. These problems have,
to some extent, been addressed by the Linux community, with
tools provided for some distributions to automatically update
any outdated packages.

Further, information repositories, being components
structures in their own right, and therefore capable of being
bound into a functional template also become more useful.
Rather than being separated away from other applications they
can become embedded in applications where they have
relevance. This mixing of information repositories and
document processors allows for a more fluid flow of
information. It becomes more practical to have functional
templates which include data taken from automated
information repositories, a feature that some modern
applications are just beginning to implement.

VII. COMMERCIAL CONSIDERATIONS

The large number of computer users today use general-
purpose applications for much of their work. Since the web
has become popular even some call centres, which had
previously used specially written systems are now uses the
general-purpose web-browser as their interface.

For the companies that develop such general-purpose
software moving to a component software model is against
their interests. By doing so they would have to compete with
other vendors for every single feature. As it is they can resist
small software vendors who specialise in a specific feature by
touting the advantages of a single coherent platform. It is to
be expected therefore that this kind of innovation is unlikely
to come from the largest of the monolithic software vendors.

The other major commercial threat to this software model is
the inconvenience of having to assemble software into
functional templates. However, rather than being seen as a
threat, this can be viewed as an opportunity for a new industry
to emerge. By analogy the Linux community produces vast
quantities of small pieces on unconnected software. To make
installing a Linux systems practical companies have emerged,
such as RedHat[8] and YellowDog[9], that package up useful
collections of software and allow users to install them

relatively easily. So it would also be possible for functional
templates that combine a large number of components from
different vendors to be packaged together by companies
dedicated to building custom systems for more specific
markets. At this point it is easy to imagine companies, who
rather than specialising in specific software solutions
specialised in certain domains, and packaged software of many
different kinds to support users working in these domains.

What makes this approach timely, as has not been the case
before, is the relative maturity of the Internet as a deployment
medium. Now, it is genuinely possible for a packager to sell a
software configuration that may require components from
many other vendors. Before the widespread adoption of the
Internet, buying software in small units like this would be
been prohibitively inconvenient and overwhelming to end-
users. Technologies such as Sun Microsystems’ Java Web
Start[10] clearly demonstrate the potential of the Internet in
this respect.

As a simple example, physicists and mathematicians in
academia produce papers in which they need to present
equations. In most word processors equation editors are
separate pieces of software that integrate relatively poorly with
the rest of the system. However, a specialised package for
mathematicians would clearly have this feature emphasised
since it is such a common aspect of their work.

Because this software is aimed at small niches it is easy to
imagine that companies would be able to offer excellent
software without overbearing competition from current
software giants simply because those giants do not have the
resources to specialise in everything!

Functional Templates therefore have the potential to be, not
only technically feasible, but also commercially viable, and
most definitely desirable for users.

VIII. CONCLUSION

The GUI scaling problem has emerged as the complexity of
software has increased over the last five to ten years. Because
of fundamental limitations both in computer hardware, but
more importantly in human ability, we are at the limit of
complexity people can deal with. To solve the problem then
we must in fact reduce the amount of functionality we offer
people, and to do this we need to specialise our software more
to serve their exact requirements.

This requires a more component based software model, and
service companies to understand the needs of specific domains
and to package software to meet the needs in those domains.

The Internet will be critical as a distribution medium if this
model of software is adopted.

Peter M. Bagnall is an independent software design consultant specialising
in the design of usable systems. He spent two years working with Cooper
Interaction Design in Palo Alto, California, following four years as a
software research engineer at British Telecommunications Martlesham
Heath Laboratories.

www.surfaceeffect.com 6

REFERENCES

[1] Cramming more components onto integrated circuits
 http://www.intel.com/research/silicon/moorespaper.pdf

[2] The PC Technology Guide – Graphics Cards
 http://www.pctechguide.com/05graphics.htm

[3] Apple iTunes
 http://www.apple.com/itunes/

[4] Apple iPhoto
 http://www.apple.com/iphoto/

[5] The Inmates are Running the Asylum, Alan Cooper
ISBN 0672316498

[6] Eudora Moodwatch
 http://www.eudora.com/download/eudora/windows/5.0/Whatsnew.pdf
Using Moodwatch - pp 28

[7] Flexinet Final Report – Chapter 29, Blueprints
 http://www.ansa.co.uk/ANSATech/ANSAhtml/98-ansa/flexon.pdf

[8] Redhat Linux
 http://www.redhat.com/

[9] YellowDog Linux
 http://www.yellowdoglinux.com/ .

[10] Java Web Start
 http://java.sun.com/products/javawebstart/

